If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2+2n-25=0
a = 2; b = 2; c = -25;
Δ = b2-4ac
Δ = 22-4·2·(-25)
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{51}}{2*2}=\frac{-2-2\sqrt{51}}{4} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{51}}{2*2}=\frac{-2+2\sqrt{51}}{4} $
| w-5/6=1/6 | | 6x-18+5x=180 | | 1-2x^-0.3333=0 | | 5x–10=7(x–2) | | 1-2x^-1/3=0 | | 3x²+14x+8x=0 | | 23a=6 | | 51/4*b=12 | | -7(10x-3)=0 | | 1-80x-24=0 | | 51/4b=12 | | 1-80x+24=0 | | 1-8(10x-3)=0 | | 11.2=2x | | -4v-12=-8(v-2) | | -6(y+6)=7y+16 | | .30x2=18.50 | | -8-25=-6(4n+4)-1 | | -2x=4x+10 | | 11/6x+8/3=5/3x | | 7x-11+79=180 | | 6-(2-4x)=0 | | 7(y+5)-2y=-5 | | k^2-14k+25=0= | | 16+4x+26=90 | | -16=-5w+8(w-5) | | 7x-7x=-4-4 | | 3(u+2)-6u=18 | | 6500-x+18/100*6500-x=3500 | | 50=4y-14 | | 1=3v+2(v+2) | | 3x^2-13x-34=0 |